Chứng minh rằng với mọi \(n\in N^{\circledast}\), ta có :
a) \(2n^3-3n^2+n\) chia hết cho 6
b) \(11^{n+1}+12^{n-1}\) chia hết cho 133
Lời giải:
\(A=n\left(2n^3-3n+1\right)=n\left(n-1\right)\left(2n^2+2n-1\right)\)
\(A=n\left(n-1\right)\left[2n\left(n+1\right)-1\right]=2n\left(n-1\right)\left(n+1\right)+n\left(n-1\right)=B-C\)\(\left\{{}\begin{matrix}B⋮2\\B⋮3\end{matrix}\right.\)\(\Rightarrow B⋮6\forall n\in N\)
\(C=n\left(n-1\right)\) không thể chia hết cho 6 với mọi n thuộc N
\(\Rightarrow A\) chỉ chia hết cho 6 với điều kiện \(ne3k+2\)
ví dụ đơn giải với k=0 => n= 2
\(A=2.2^3-3.2^2+2=14⋮̸6\)
Kết luận đề sai
Bài 1.1 (Sách bài tập trang 99)
Chứng minh các đẳng thức sau (với \(n\in N^{\circledast}\))
a) \(2+5+8+...+\left(3n-1\right)=\dfrac{n\left(3n+1\right)}{2}\)
b) \(3+9+27+-+3^n=\dfrac{1}{2}\left(3^{n+1}-3\right)\)
Cho tam giác ABC có trung tuyến AD. Trên AB lấy điểm M sao cho AM/AB = 1/4; Trên AC lấy điểm N sao cho AN/AC = 1/2. Đoạn MN cắt AD tại E. Hỏi tỉ số AE/AD bằng bao nhiêu?
ABCDMNEAMAB=14ANAC=12AEAD=?
B = \(\dfrac{1}{2}+\dfrac{1}{^{ }2^2}+\dfrac{1}{2^3}+--.+\dfrac{1}{2^{2016}}\)
CMR B < 1
A=4+2^2+2^3+...+2^20
tính tổng 2+5+8+...+2006
Tính A=5-5^2+5^3-5^4+...-5^98+5^99
Các bn giúp mk nhanh nka!!!!
\(=\lim\limits_{x\rightarrow+\infty}\frac{\left(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}\right)\left(\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}\right)}{\left(\sqrt{x+\sqrt{x+\sqrt{x}}+\sqrt{x}}\right)}\)=\(\lim\limits_{x\rightarrow+\infty}\frac{x+\sqrt{x+\sqrt{x}}-x}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}=\lim\limits\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}\)
=\(\lim\limits\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{1}{\sqrt{x}}+\frac{1}{x\sqrt{x}}}}+1}\)
tính nhanh: 10-9+8-7+6-5+4-3+2-1
(me cần cách giải lớp 2 nah)
Cho S= 1/3+1/32+1/33+...+1/399. Hãy so sánh A với 1/2
Chiều nay mình nộp rồi đó là ngắn gọn dễ hiểu thôi nhé!!!
Biết 12+22+32+...+102=385.Tinh S=(1/7)2+(2/7)2+...+(10/7)2
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến