Giải phương trình :
\(x^{3000}+500x^3+1500x+1999=0\)
Áp dụng bất đẳng thức Cauchy cho \(x^{3000}\) và 2999 số 1, ta được :
\(x^{3000}+2999\ge3000\sqrt[3000]{x^{3000}}=3000\left|x\right|\ge-3000x\) (a)
Dấu bằng trong (a) xảy ra khi và chỉ khi x = -1.
Tương tự :
\(x^{3000}+999\ge1000\sqrt[1000]{x^{3000}}=1000\left|x\right|\ge-1000x\) (b)
Dấu bằng trong (b) xảy ra khi và chỉ khi x = -1.
Từ (a) và (b), ta được :
\(2x^{3000}+3998\ge-3000x-1000x^3\)
\(\Leftrightarrow x^{3000}+500x^3+1500x+1999\ge0\) (c)
Mà phương trình ban đầu nghĩa là dấu bằng xảy ra ở (c), tức là dấu ở (a) và (b) đồng thời xảy ra.
Vậy Phương trình đã cho \(\Leftrightarrow x=-1\)
Đáp số : \(x=-1\)
một bình đựng đầy nước thì nặng 1340 g . Khi dung nửa nước thì nặng 720 g . hỏi lượng nước chứa đầy bình là bao nhiêu g
cho 3 số thực dương a,b,c.CMR
\(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge9\left(ab+bc+ca\right)\)
Cho a,b,c là độ dài 3 cạnh của một tam giác chứng minh :
ab + bc + ca <= a2 +b2 +c2<= 2(ab+bc+ca)
mot nguoi nong dan thu hoach lua , thua ruong thu nhat thu duoc 15,7 ta thoc , thua ruong thu hai thu hoach duoc gap doi thua ruong thu 1 hoi nguoi do thu hoach ca hai thua ruong duoc bao nhieu kg thoc
Cho x,y > 0 và x+y+xy = 8 . Tìm giá trị nhỏ nhất của A = x2+y2
Cho các số thực dương a, b, c. CMR:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\sqrt{2\frac{a}{b+c}.\frac{b}{c+a}.\frac{c}{a+b}}\ge2\)
Cho góc vuông xOy, điểm A thuộc tia Ox,điểm B thuộc tia Oy. Đường trung trực của đoạn thẳng OA cắt Ox tại D, đường trung trực của đoạn OB cắt Oy tại E. Gọi C là giao điểm của hai đường trung trực đó. Chứng mình rằng:
a) CE = OD
b) CE vuông góc với CD
c) CA = CB
d) CA song song với DE
e) Ba điểm A, B, C thẳng hàng
Giair phương trình
\(\begin{cases}x+\frac{yz}{y+z}=\frac{1}{2}\\y+\frac{zx}{z+x}=\frac{1}{3}\\z+\frac{xy}{x+y}=\frac{1}{4}\end{cases}\)
\(CM:\frac{1}{51}+\frac{1}{52}+-+\frac{1}{100}< \frac{5}{6}\)
Tìm GTLN của A=x-|x|
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến