Cho tam giác ABC có \(\widehat{A}=60^0\). Các tia phân giác của các góc B, C cắt nhau ở I và cắt AC, AB theo thứ tự ở D, E. Chứng minh rằng ID = IE
Hướng dẫn : Kẻ tia phân giác của góc BIC
Tia phân giác của góc BIC cắt BC ở K. \(\Delta ABC\) có \(\widehat{A}=60^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=180^0-60^0=120^0,\widehat{B_1}+\widehat{C_1}=\dfrac{\widehat{B}+\widehat{C}}{2}=\dfrac{120^0}{2}=60^0.\)
\(\Delta BIC\) có \(\widehat{B_1}+\widehat{C_1}=60^0\Rightarrow\widehat{BIC}=180^0-60^0=120^0.\)
Suy ra \(\widehat{I_1}=60^0,\widehat{I_4}=60^0.\)
IK là tia phân giác của góc BIC nên \(\widehat{I_2}=\widehat{I_3}=60^0.\)
\(\Delta BIE = \Delta BIK\) (g.c.g) => IE = IK (2 cạnh tương ứng).
\(\Delta CID = \Delta CIK\)(g.c.g) => ID = IK (2 cạnh tương ứng).
Do đó ID = IE.
A B C I D E K 60 độ 1 2 3 4 1 1 2 2
Bài 5.1 - Bài tập bổ sung (Sách bài tập - tập 1 - trang 146)
Cho tam giâc ABC và tam giác có ba đỉnh là D, E, F. Biết AB = DF và \(\widehat{B}=\widehat{D}\)
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai ?
a) Nếu \(\widehat{A}=\widehat{F}\) thì hai tam giác đó bằng nhau
b) Nếu \(\widehat{A}=\widehat{E}\) thì hai tam giác đó bằng nhau
c) Nếu \(\widehat{C}=\widehat{E}\) thì hai tam giác đó bằng nhau
Bài 5.2 - Bài tập bổ sung (Sách bài tập - tập 1 - trang 146)
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC. Một đường thẳng đi qua A cắt các cạnh DE và BC theo thứ tự ở M và N. Chứng minh :
a) BC // DE
b) AM = AN
Bài 73 (Sách bài tập - tập 1 - trang 147)
Cho tam giác ABC. Tia phân giác của góc B cắt AC ở D. Trên tia đối của tia BA lấy E sao cho BE = BC
Chứng minh rằng BD // EC ?
Bài 74 (Sách bài tập - tập 1 - trang 147)
Tính số đo các góc của tam giác ACD trên hình 60 ?
Bài 75 (Sách bài tập - tập 1 - trang 147)
Cho tam giác ABC cân tại A. Vẽ điểm D sao cho A là trung điểm của BD. Tính số đo góc BCD ?
Bài 76 (Sách bài tập - tập 1 - trang 147)
Cho tam giác ABC cân tại A có cạnh bên bằng 3cm. Gọi D là một điểm thuộc đáy BC. Qua D, kẻ các đường thẳng song song với các cạnh bên, chúng cắt AB và AC theo thứ tự tại F và E
Tính tổng DE + DF ?
Bài 70 (Sách bài tập - tập 1 - trang 147)
Cho tam giác ABC cân tại A. Lấy điểm H thuộc cạnh AC, điểm K thuộc canh AB sao cho AH = AK. Gọi O là giao điểm của BH và CK. Chứng minh rằng tam giác OBC là tam giác cân ?
Bài 69 (Sách bài tập - tập 1 - trang 147)
Cho tam giác ABC cân tại A. Gọi M là trung điểm của AC, N là trung điểm của AB. Chứng minh rằng BM = CN ?
Bài 68 (Sách bài tập - tập 1 - trang 147)
Cho tam giác ABC cân tại A có \(\widehat{A}=100^0\). Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN. Chứng minh rằng MN // BC ?
Bài 67 (Sách bài tập - tập 1 - trang 147)
a) Tính góc ở đáy của một tam giác cân biết góc đỉnh bằng \(50^0\) , bằng \(a^0\)
b) Tính góc ở đỉnh của một tam giác cân biết góc đỉnh bằng \(50^0\) , bằng \(a^0\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến