Bài 1
\(16\frac{2}{7}:\left(-\frac{2}{5}\right)-28\frac{2}{7}:\left(-\frac{2}{5}\right)\)
bài 2
Tính độ dài của các cạnh của 1 tam giác, biết chu vi tam giác là 36cm và các cạnh của tam giác tỉ lệ với các số 3;4;5
bài 1:
\(16\frac{2}{7}:\left(-\frac{2}{5}\right)-28\frac{2}{7}:\left(-\frac{2}{5}\right)\\ =\left(16\frac{2}{7}-28\frac{2}{7}\right):\left(-\frac{2}{5}\right)\\ =\left(-12\right):\left(-\frac{2}{5}\right)\\ =12:\frac{2}{5}\\ =\frac{6.5}{1}\\ =30\)
Bài 2:
Gọi độ dài 3 cạnh của tam giác là x; y; z; ta có:
Chu vi của tam giác là 36
=> x + y + z = 36
Ba cạnh của tam giác tỉ lệ với 3; 4; 5
=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{36}{12}=3\)
x/3 = 3 => x = 3.3 = 9 cm
y/4 = 3 => y = 3.4 = 12 cm
z/5 = 3 => z = 3.5 = 15 cm
Vậy độ dài 3 cạnh của tam giác lần lượt là 9; 12; 12 (cm)
cho a>=1/2 và a/b>1 . chứng minh (2a3 + 1)/(4b(a-b))>=3
Tính giá trị nhỏ của biểu thức
\(P=\sqrt{\left(x+1995\right)^2}+\sqrt{\left(x+1996\right)^2}\)
Cho a,b,c>0.Chứng minh
\(\frac{a^5+b^5+c^5}{3}\ge\left(\frac{a+b+c}{3}\right)^5\)
æ chém nhiệt tình vào nhé
bài 1: tìm x, y biết
a, (x-3)^2 +(y + 2)^2 = 0
b,(x-12+y)^200+(x-4-y)^200= 0
Bài 2:cho
A= 3+3^2+3^3+--.+3^2008
Tìm x biết 2A+3=3^x
cho 3 số thực dương z;y;z thỏa mãn x+y+ztìm GTNN của biểu thức :\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
tìm GTNN của biểu thức :
\(P=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
Chứng minh BĐT cauchy với pp quy nạp
cho a;b;c là các số thực khôn âm có a+b+c=1.c/m rằng:
2(a^3+b^3+c^3)>hoặc = a^2+b^2+c^2
A=1.2.3+3.4.5+5.6.7+...+99.100.101
B=1.2^2+2.3^2+3.4^2+4.5^2+...+99.101^2
Áp dụng BĐT Bunhia
1. Chứng minh các BĐT sau
a. \(3a^2+4b^2\ge7,với3a+4b=7\)
b. \(3a^2+5b^2\ge\frac{735}{47},với2a-3a=7\)
c. \(7a^2+11b^2\ge\frac{2464}{137},với3a-5b=8\)
d. \(a^2+b^2\ge\frac{4}{5},vớia+2b=2\)
2. Chứng minh các BĐT sau
a. \(a^2+b^2\ge\frac{1}{2},vớia+b\ge1\)
b. \(a^3+b^3\ge\frac{1}{4},vớia+b\ge1\)
c.\(a^4+b^4\ge\frac{1}{8},vớia+b=1\)
d. \(a^4+b^4\ge2,vớia+b=2\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến