Lời giải:
Bài này bạn có thể sử dụng BĐT Holder bậc 3.
BĐT Holder: \((a^3+b^3+c^3)(m^3+n^3+p^3)(x^3+y^3+z^3)\geq (amx+bny+cpz)^3\)
Cách CM: Sử dụng AM-GM:
\(\frac{a^3}{a^3+b^3+c^3}+\frac{m^3}{m^3+n^3+p^3}+\frac{x^3}{x^3+y^3+z^3}\geq \frac{3amx}{\sqrt[3]{(a^3+b^3+c^3)(m^3+n^3+p^3)(x^3+y^3+z^3)}}\)
Làm như vậy với các phân thức tương tự và cộng theo vế ta thu được đpcm
(Thực ra vì nó kinh điển rồi nên đi thi không phải cm đâu)
Bây giờ sử dụng BĐT Holder bậc 3 cho bài toán:
\((a^3+b^3+c^3)(a^3+b^3+c^3)(1+1+1)\geq (a^2+b^2+c^2)^3\)
\(\Rightarrow a^3+b^3+c^3\geq 81\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=3\)
P/s: Bạn NHT toàn thích dùng dao mổ trâu để xẻ thịt gà vv