Với điều kiện (*) -3 mẫu số luôn >0; tử số có thể >0 hoặc <0. =>vậy thêm vào tử một đại lượng. sao cho tử luôn không âm hoặc luôn âm.
Ta có: \(\frac{12-8x}{-x^2-2x+3}-4=\frac{12-8x-4\left(-x^2-2x+3\right)}{\left(-x^2-2x+3\right)}=\frac{12-8x+4x^2+8x-12}{\left(-x^2-2x+3\right)}=\frac{4x^2}{\left(-x^2-2x+3\right)}\)
Mẫu số >0 lý luận trước: Tử số =4x^2>=0
\(\Rightarrow\frac{4x^2}{\left(-x^2-2x+3\right)}\ge0\Rightarrow\frac{12-8x}{\left(-x^2-2x+3\right)}-4\ge0\Rightarrow\frac{12-8x}{\left(-x^2-2x+3\right)}\ge4\)GTNN=4 khi x=0 thủa mãn điều kiện (*)