Cho hai đường tròn (O) và (O’) có O; O’cố định ; bán kính thay đổi ; tiếp xúc ngoài nhau tại A. Kẻ tiếp tuyến chung ngoài DE, D thuộc (O), E thuộc (O’) (D, E là các tiếp điểm). Kẻ tiếp tuyến chung trong tại A, cắt DE ở I. Gọi M là giao điểm của OIvà AD, N là giao điểm của O’I và AE. a/ Chứng minh I là trung điểm của DE. b/ Chứng minh tứ giác AMIN là hình chữ nhật.Từ đó suy ra hệ thức IM. IO = IN.IO’ c/ Chứng minh OO’ là tiếp tuyến của đường tròn có đường kính DE d/ Tính DE, biết OA = 5cm , O’A = 3cm e) Khi D, E lần lượt chuyển động trên (O) và (O’) thì I chạy trên đường nào? Vì sao

Các câu hỏi liên quan