Đáp án đúng: B Phương pháp giải: Sử dụng công thức tính tổng của \(n\) số hạng đầu tiên của CSC, CSN tính tổng của mẫu và tử của từng dãy số, sau đó tính giới hạn của dãy số.Giải chi tiết:Ta có: \(1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\) \(\begin{array}{l} \Rightarrow {u_n} = \dfrac{{n\sqrt {1 + 2 + 3 + ... + n} }}{{{n^2} + n + 1}} = \dfrac{{n\sqrt {\dfrac{{n\left( {n + 1} \right)}}{2}} }}{{{n^2} + n + 1}}\\ \Rightarrow \lim {u_n} = \lim \dfrac{{n\sqrt {\dfrac{{n\left( {n + 1} \right)}}{2}} }}{{{n^2} + n + 1}} = \lim \dfrac{{\sqrt {\dfrac{1}{2} + \dfrac{1}{{2n}}} }}{{1 + \dfrac{1}{n} + \dfrac{1}{{{n^2}}}}} = \dfrac{{\sqrt 2 }}{2}\end{array}\)