A.\(2 < \dfrac{{a + b}}{{a + b + c}} + \dfrac{{b + c}}{{b + c + d}} + \dfrac{{c + d}}{{c + d + a}} + \dfrac{{d + a}}{{d + a + b}} < \dfrac{5}{2}\)B.\(2 < \dfrac{{a + b}}{{a + b + c}} + \dfrac{{b + c}}{{b + c + d}} + \dfrac{{c + d}}{{c + d + a}} + \dfrac{{d + a}}{{d + a + b}} < 4\)C.\(2 < \dfrac{{a + b}}{{a + b + c}} + \dfrac{{b + c}}{{b + c + d}} + \dfrac{{c + d}}{{c + d + a}} + \dfrac{{d + a}}{{d + a + b}} < 5\)D.\(2 < \dfrac{{a + b}}{{a + b + c}} + \dfrac{{b + c}}{{b + c + d}} + \dfrac{{c + d}}{{c + d + a}} + \dfrac{{d + a}}{{d + a + b}} < 3\)
A.\(x < y < z\)B.\(y < x < z\)C.\(z < x < y\)D.\(x < z < y\)
A.\({\left( {a - \dfrac{b}{2}} \right)^2} + {\left( {a - \dfrac{c}{2}} \right)^2} + {\left( {a - \dfrac{d}{2}} \right)^2} + {\left( {a - \dfrac{e}{2}} \right)^2} \ge 0\)B.\({\left( {b - \dfrac{a}{2}} \right)^2} + {\left( {c - \dfrac{a}{2}} \right)^2} + {\left( {d - \dfrac{a}{2}} \right)^2} + {\left( {e - \dfrac{a}{2}} \right)^2} \ge 0\)C.\({\left( {b + \dfrac{a}{2}} \right)^2} + {\left( {c + \dfrac{a}{2}} \right)^2} + {\left( {d + \dfrac{a}{2}} \right)^2} + {\left( {e + \dfrac{a}{2}} \right)^2} \ge 0\)D.\({\left( {a - b} \right)^2} + {\left( {a - c} \right)^2} + {\left( {a - d} \right)^2} + {\left( {a - e} \right)^2} \ge 0\)
A.\(\dfrac{{{a^4}{b^2} + {b^4}{c^2} + {c^4}{a^2} + 3}}{{{a^{2020}} + {b^{2020}} + {c^{2020}}}} \ge 1\)B.\(\dfrac{{{a^4}{b^2} + {b^4}{c^2} + {c^4}{a^2} + 3}}{{{a^{2020}} + {b^{2020}} + {c^{2020}}}} \ge \dfrac{1}{2}\)C.\(\dfrac{{{a^4}{b^2} + {b^4}{c^2} + {c^4}{a^2} + 3}}{{{a^{2020}} + {b^{2020}} + {c^{2020}}}} \ge 2\)D.\(\dfrac{{{a^4}{b^2} + {b^4}{c^2} + {c^4}{a^2} + 3}}{{{a^{2020}} + {b^{2020}} + {c^{2020}}}} \ge \dfrac{3}{2}\)
A.\(11\)B.\(12\)C.\(13\)D.\(14\)
A.một lầnB.hai lầnC.ba lầnD.bốn lần
A.>B.<C.=D.Tất cả đều sai
A.\(\frac{{24}}{{19}} < \frac{{39}}{{34}}\)B.\(\frac{{24}}{{19}} = \frac{{39}}{{34}}\)C.\(\frac{{24}}{{19}} > \frac{{39}}{{34}}\)D.Tất cả đều sai
A.=B.>C.<D.Tất cả đều sai
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến