Đáp án đúng:
Giải chi tiết:a) \(y' = \dfrac{2}{3}.\dfrac{{ - 1}}{{{x^2}}} = \dfrac{{ - 2}}{{3{x^2}}}\)
b) \(y = \dfrac{1}{{{x^{2021}}}} = {x^{ - 2021}} \Rightarrow y' = - 2021{x^{ - 2022}} = \dfrac{{ - 2021}}{{{x^{2022}}}}\)
c) \(y = \dfrac{{ - 3}}{{7{x^4}}} = - \dfrac{3}{7}{x^{ - 4}} \Rightarrow y' = - \dfrac{3}{7}.\left( { - 4} \right){x^{ - 5}} = \dfrac{{12}}{{7{x^5}}}\)
d) \(y = \dfrac{2}{{{x^{2020}}}} - \dfrac{4}{{{x^{2022}}}} = 2{x^{ - 2020}} - 4{x^{ - 2022}}\) \( \Rightarrow y' = 2.\left( { - 2020} \right){x^{ - 2021}} - 4.\left( { - 2022} \right){x^{ - 2023}} = \dfrac{{ - 4040}}{{{x^{2021}}}} + \dfrac{{8088}}{{{x^{2023}}}}\)