Đáp án đúng:
Giải chi tiết:a) \(y' = 2.\dfrac{1}{{2\sqrt x }} = \dfrac{1}{{\sqrt x }}\)
b) \(y' = \dfrac{1}{4}{x^{ - \frac{3}{4}}} - \dfrac{1}{3}{x^{ - \frac{2}{3}}} = \dfrac{1}{{4\sqrt[4]{{{x^3}}}}} - \dfrac{1}{{3\sqrt[3]{{{x^2}}}}}\)
c) \(y = {x^2}\sqrt x = {x^{\frac{5}{2}}} \Rightarrow y' = \dfrac{5}{2}{x^{\frac{3}{2}}} = \dfrac{5}{2}x\sqrt x \)
d) \(y = \dfrac{{\sqrt[3]{{{x^2}}}}}{{\sqrt x }} = {x^{\frac{1}{6}}} \Rightarrow y' = \dfrac{1}{6}{x^{ - \frac{5}{6}}} = \dfrac{1}{{6\sqrt[6]{{{x^5}}}}}\)