P= \((\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1})\cdot(\dfrac{1-x}{\sqrt{2}})^2\)
(Với x≥0;x≠1)
a)Rút Gọn P
b)Chứng Minh rằng nếu 00
a) ta có : \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\dfrac{1-x}{\sqrt{2}}\right)^2\)
\(\Leftrightarrow P=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\left(\dfrac{1-x}{\sqrt{2}}\right)^2\)
\(\Leftrightarrow P=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\left(\dfrac{1-x}{\sqrt{2}}\right)^2\)
b) ta có : \(x< 1\Leftrightarrow x-1< 0\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow x-\sqrt{x}< 0\Leftrightarrow\sqrt{x}-x>0\)
\(\Leftrightarrow P>0\left(đpcm\right)\)
Cho a,b,c là số dương thỏa mãn a+b+c=3. Chứng minh rằng: \(a^2b+b^2c+c^2a\ge\dfrac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
Giải phương trình sau:
\(\sqrt{x+1}+\sqrt{x+6}=5\)
(3+\(\sqrt{5}\))(\(\sqrt{5}\)-1)\(\sqrt{3-\sqrt{5}}\)=4\(\sqrt{2}\)
Chứng minh
1 ô tô từ A đến B cách nhau 260km. Sau khi o tô đi được 120km với vận tốc dự định thì tăng vận tốc thêm 10km/h trên quãng đường còn lại. Tính vận tốc dự định của ô tô biết xe đến B sớm hơn thời gian dự định 20 phút
1) Tính giá trị biểu thức C=\(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\) 2) Chứng minh rằng với mọi số nguyên dương n ta đêu có \(\sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}}\) < 3 ( n căn bậc 4) Mọi người giúp em với ạ
\(\left(\sqrt{2}-\sqrt{7}\right)-5\sqrt{9+2\sqrt{14}}\)
giải phương trình
\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=7\sqrt{2}\)
CM bất đẳng thức sau:
\(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
Bài 1: Tìm giá trị lớn nhất của biểu thức sau: H= \(4\sqrt{x}-x-y+6\sqrt{y}-15\)
Bài 2: Tìm các giá trị nguyên của x để biểu thức nhận giá trị nguyên (Tìm x ϵ Z để P ϵ Z)
F= \(\dfrac{2\sqrt{x}-5}{\sqrt{x}-4}\) với x ≥ 0, x ≠ 9
G= \(\dfrac{4\sqrt{x}-9}{\sqrt{x}+4}\) với x ≥ 0, x ≠ 25
1. Cho biểu thức : A = \(\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\).
a) Rút gọn A.
b) Tìm x để A < 0.
2. Cho biểu thức: B = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\).
a) Rút gọn B.
b) Tìm x để B = \(\dfrac{1}{2}\)
c) Tìm x để B > 0.
3. a) Tìm GTLN của biểu thức: A = \(\dfrac{1}{x-\sqrt{x}+1}\).
b) Tìm GTNN của biểu thức: B = \(\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\).
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến