Cho hai số hữu tỉ \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) với \(b>0\), \(d>0\). Chứng tỏ rằng nếu \(\dfrac{a}{b}< \dfrac{c}{d}\) thì \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

Các câu hỏi liên quan