`S = 1 + 2 + 2^2 +..........+ 2^100`
`2S = 2 + 2^2 + 2^3 +...........+ 2^101`
`2S - S = ( 2 + 2^2 + 2^3 +...........+ 2^101 ) - ( 1 + 2 + 2^2 +..........+ 2^100 )`
`S = 2^101 - 1`
`M = 1 - 2 + 2^2 - 2^3 +.............+ 2^98 - 2^99 + 2^100`
`2M = 2 - 2^2 + 2^3 - 2^4 +.............+ 2^99 - 2^100 + 2^101`
`2M + M = ( 2 - 2^2 + 2^3 - 2^4 +.............+ 2^99 - 2^100 + 2^101 ) + ( 1 - 2 + 2^2 - 2^3 +.............+ 2^98 - 2^99 + 2^100 )`
`3M = 2^101 + 1`
`M = (2^101 + 1)/3`
`N = 1 + 3^2 + 3^4 +............+ 3^98 + 3^100`
`3^2N = 3^2 + 3^4 + 3^6 +.........+ 3^100 + 3^102`
`3^2N - N = ( 3^2 + 3^4 + 3^6 +.........+ 3^100 + 3^102 ) - ( 1 + 3^2 + 3^4 + ........ + 3^98 + 3^100 )`
`8N = 3^102 - 1`
`N = (3^102-1)/8`
`E = 1 - 2^3 + 2^6 - ........................ - 2^93 + 2^96 - 2^99`
`2^3E = 2^3 - 2^6 + 2^9 - ............. - 2^96 + 2^99 - 2^102`
`8E + E = ( 2^3 - 2^6 + 2^9 - ............. - 2^96 + 2^99 - 2^102 ) + ( 1 - 2^3 + 2^6 - .................. - 2^93 + 2^96 - 2^99 )`
`9E = 1 - 2^102`
`E = ( 1-2^102)/9`