Đáp án:
Giải thích các bước giải:
B = (1+ 1/1.3 )(1+ 1/2.4 )...(1+ 1/2016.2018 )
$= (1.3+1. \frac{1}{3})....(\frac{2016.2018+ 1}{2016.2018})$
$= (2. 2. \frac{1}{3})...(\frac{2017. 2017}{2016. 2018})$
$= (2...2017).(\frac{2.....2017}{(1.2....2016).(3...2018)}$
$= \frac{2017.2}{2018}$
$= \frac{2017. 2}{1006. 2}$
$= \frac{2017}{1006}$