Sửa đề: Chứng minh: \(4\left(a-b\right)\left(b-c\right)=4\left(b-c\right)^2\)
Đặt \(\dfrac{a}{2017}=\dfrac{b}{2018}=\dfrac{b}{2019}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=2017k\\b=2018k\\c=2019k\end{matrix}\right.\)
VT: \(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(2018k-2019k\right)\)
\(=4.\left(-k\right).\left(-k\right)=4k^2\) (1)
VP: \(4\left(b-c\right)^2=4\left(2018k-2019k\right)^2=4k^2\) (2)
Từ (1) và (2), suy ra:
\(4\left(a-b\right)\left(b-c\right)=4\left(b-c\right)^2\)\(\Rightarrow\) (đpcm)
~ Học tốt ~