a) Giải phương trình \(2{{x}^{3}}-\sqrt{108x+45}=x\sqrt{48x+20}-3{{x}^{2}}\)
b) Giải hệ phương trình \(\left\{ \begin{align} & {{x}^{2}}+{{y}^{2}}+x+y=\left( x+1 \right)\left( y+1 \right) \\ & {{\left( \frac{x}{y+1} \right)}^{2}}+{{\left( \frac{y}{x+1} \right)}^{2}}=1 \\ \end{align} \right.\)
A.a) \(x=1\pm \sqrt{3}\)
b) \(\left( x;y \right)=\left( 1;0 \right)\) hoặc \(\left( x;y \right)=\left( 0;1 \right)\)
B.a) \(x=1\pm \sqrt{2}\)
b) \(\left( x;y \right)=\left( 1;2 \right)\) hoặc \(\left( x;y \right)=\left( 2;1 \right)\)
C.a) \(x=1\pm \sqrt{2}\)
b) \(\left( x;y \right)=\left( 1;0 \right)\) hoặc \(\left( x;y \right)=\left( 0;1 \right)\)
D.a) \(x=3\pm \sqrt{2}\)
b) \(\left( x;y \right)=\left( -1;0 \right)\) hoặc \(\left( x;y \right)=\left( 0;-1 \right)\)