Xác định giá trị của m để phương trình \({\left| {x - 1} \right|^3} - 3\left| {x - 1} \right| - 3m + 2 = 0\) có 4 nghiệm phân biệt. A.\(m > \dfrac{2}{3}\) B.\(0 < m < \dfrac{2}{3}\) C.\(m < 0\) D.\(m \dfrac{2}{3}\)
Đáp án đúng: B Cách giải nhanh bài tập nàyÁp dụng cách vẽ đồ thị hàm số ở Dạng 2 để vẽ đồ thị hàm số và làm bài toán này. Ta có: \({\left| {x - 1} \right|^3} - 3\left| {x - 1} \right| - 3m + 2 = 0 \Leftrightarrow {\left| {x - 1} \right|^3} - 3\left| {x - 1} \right| + 2 = 3m\) Số nghiệm của phương trình \({\left| {x - 1} \right|^3} - 3\left| {x - 1} \right| - 3m + 2 = 0\) là số giao điểm của đồ thị hàm số \(y = {\left| {x - 1} \right|^3} - 3\left| {x - 1} \right| + 2\) và đường thẳng \(y = 3m\). Ta có đồ thị hàm số \(y = {\left| {x - 1} \right|^3} - 3\left| {x - 1} \right| + 2\) có dạng:
Quan sát đồ thị ta thấy đường thẳng \(y = 3m\) cắt đồ thị hàm số \(y = {\left| {x - 1} \right|^3} - 3\left| {x - 1} \right| + 2\) tại 4 điểm phân biệt \(0 < 3m < 2 \Leftrightarrow 0 < m < \dfrac{2}{3}\). Chọn B.