Giải thích các bước giải:
a) Ta có:
$B$ có nghĩa
$ \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
\sqrt x - 1 \ne 0\\
\sqrt x + 3 \ne 0\\
x + 2\sqrt x - 3 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
x \ne 1\\
\sqrt x + 3 \ne 0\\
\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right) \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
x \ne 1
\end{array} \right.$
Vậy ĐKXĐ biểu thức $B$ là: ${x \ge 0;x \ne 1}$
b) Ta có:
$x=0$ thỏa mãn điều kiện xác định của $B$ nên khi $x=0$ thì:
$B = \dfrac{{5.0}}{{0 - 1}} - \dfrac{{26}}{{0 + 3}} - \dfrac{{20}}{{0 + 0 - 3}} = - 2$
Vậy $B=-2$ khi $x=0$
c) Ta có:
$\begin{array}{l}
B = \dfrac{{5\sqrt x }}{{\sqrt x - 1}} - \dfrac{{26}}{{\sqrt x + 3}} - \dfrac{{20}}{{x + 2\sqrt x - 3}}\\
= \dfrac{{5\sqrt x }}{{\sqrt x - 1}} - \dfrac{{26}}{{\sqrt x + 3}} - \dfrac{{20}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{5\sqrt x \left( {\sqrt x + 3} \right) - 26\left( {\sqrt x - 1} \right) - 20}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{5x - 11\sqrt x + 6}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{\left( {\sqrt x - 1} \right)\left( {5\sqrt x - 6} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{5\sqrt x - 6}}{{\sqrt x + 3}}
\end{array}$
d) Ta có:
$\begin{array}{l}
B = \dfrac{{ - 1}}{4}\\
\Leftrightarrow \dfrac{{5\sqrt x - 6}}{{\sqrt x + 3}} = \dfrac{{ - 1}}{4}\\
\Leftrightarrow 4\left( {5\sqrt x - 6} \right) + \sqrt x + 3 = 0\\
\Leftrightarrow 21\sqrt x - 21 = 0\\
\Leftrightarrow \sqrt x = 1\\
\Leftrightarrow x = 1\left( {ktm:DKXD} \right)
\end{array}$
Vậy $\not \exists x$ để $B = \dfrac{{ - 1}}{4}$
e) Ta có:
$\begin{array}{l}
B = \dfrac{{\sqrt x + 2}}{5}\\
\Leftrightarrow \dfrac{{5\sqrt x - 6}}{{\sqrt x + 3}} = \dfrac{{\sqrt x + 2}}{5}\\
\Leftrightarrow \left( {\sqrt x + 3} \right)\left( {\sqrt x + 2} \right) - 5\left( {5\sqrt x - 6} \right) = 0\\
\Leftrightarrow x - 20\sqrt x + 36 = 0\\
\Leftrightarrow \left( {\sqrt x - 2} \right)\left( {\sqrt x - 18} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt x = 2\\
\sqrt x = 18
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 4\\
x = 20
\end{array} \right.\left( {tm} \right)
\end{array}$
Vậy $x \in \left\{ {4;20} \right\}$ thỏa mãn.
f) Ta có:
$\begin{array}{l}
B < 0\\
\Leftrightarrow \dfrac{{5\sqrt x - 6}}{{\sqrt x + 3}} < 0\\
\Leftrightarrow 5\sqrt x - 6 < 0\\
\Leftrightarrow \sqrt x < \dfrac{6}{5}\\
\Leftrightarrow x < \dfrac{{36}}{{25}}
\end{array}$
Kết hợp với ĐKXĐ thì: $0 \le x < \dfrac{{36}}{{25}};x \ne 1$
Vậy $0 \le x < \dfrac{{36}}{{25}};x \ne 1$ thỏa mãn đề.
g) Ta có:
$\begin{array}{l}
B < 0\\
\Leftrightarrow 0 \le x < \dfrac{{36}}{{25}};x \ne 1
\end{array}$
Mà $x \in N \Leftrightarrow x = 0$
Vậy $x=0$ thỏa mãn đề.
h) Ta có:
$\begin{array}{l}
B = \dfrac{{5\sqrt x - 6}}{{\sqrt x + 3}}\\
= \dfrac{{5\left( {\sqrt x + 3} \right) - 21}}{{\sqrt x + 3}}\\
= 5 - \dfrac{{21}}{{\sqrt x + 3}}
\end{array}$
Mà $\sqrt x + 3 > 0,\forall x \Rightarrow \dfrac{{ - 21}}{{\sqrt x + 3}} < 0$
$\begin{array}{l}
\Rightarrow 5 - \dfrac{{21}}{{\sqrt x + 3}} < 5\\
\Rightarrow B < 5
\end{array}$
k) Ta có:
$\begin{array}{l}
B < 4\\
\Leftrightarrow \dfrac{{5\sqrt x - 6}}{{\sqrt x + 3}} < 4\\
\Leftrightarrow 5\sqrt x - 6 < 4\sqrt x + 12\\
\Leftrightarrow \sqrt x < 18\\
\Leftrightarrow x < 324
\end{array}$
Kết hợp với ĐKXĐ: $0 \le x < 324,x \ne 1$
Vậy $0 \le x < 324,x \ne 1$ thỏa mãn đề.
m) Ta có:
$\begin{array}{l}
B > - 1\\
\Leftrightarrow \dfrac{{5\sqrt x - 6}}{{\sqrt x + 3}} > - 1\\
\Leftrightarrow 5\sqrt x - 6 > - \sqrt x - 3\\
\Leftrightarrow 6\sqrt x > 3\\
\Leftrightarrow \sqrt x > \dfrac{1}{2}\\
\Leftrightarrow x > \dfrac{1}{4}
\end{array}$
Kết hợp với ĐKXĐ: $x > \dfrac{1}{4},x \ne 1$
Vậy $x > \dfrac{1}{4},x \ne 1$ thỏa mãn đề.
n) Ta có:
$\begin{array}{l}
B \le \dfrac{{ - x + 9\sqrt x - 10}}{{\sqrt x + 3}}\\
\Leftrightarrow \dfrac{{5\sqrt x - 6}}{{\sqrt x + 3}} \le \dfrac{{ - x + 9\sqrt x - 10}}{{\sqrt x + 3}}\\
\Leftrightarrow 5\sqrt x - 6 \le - x + 9\sqrt x - 10\\
\Leftrightarrow x - 4\sqrt x + 4 \le 0\\
\Leftrightarrow {\left( {\sqrt x - 2} \right)^2} \le 0\\
\Leftrightarrow {\left( {\sqrt x - 2} \right)^2} = 0\left( {do:{{\left( {\sqrt x - 2} \right)}^2} \ge 0,\forall x} \right)\\
\Leftrightarrow \sqrt x - 2 = 0\\
\Leftrightarrow x = 4
\end{array}$
Vậy $x=4$ thỏa mãn.
p) Ta có:
$B = \dfrac{{5\sqrt x - 6}}{{\sqrt x + 3}}$
Nên:
$\begin{array}{l}
B + 2 = \dfrac{{5\sqrt x - 6}}{{\sqrt x + 3}} + 2\\
= \dfrac{{5\sqrt x - 6 + 2\left( {\sqrt x + 3} \right)}}{{\sqrt x + 3}}\\
= \dfrac{{7\sqrt x }}{{\sqrt x + 3}}\\
\ge 0,\forall x\\
\Rightarrow B + 2 \ge 0,\forall x\\
\Rightarrow B \ge - 2
\end{array}$
Dấu bằng xảy ra
$ \Leftrightarrow \sqrt x = 0 \Leftrightarrow x = 0$
Vậy $MinB=-2\Leftrightarrow x = 0$
q) Ta có:
$N = B + \dfrac{{30}}{{\sqrt x + 3}} = \dfrac{{5\sqrt x - 6}}{{\sqrt x + 3}} + \dfrac{{30}}{{\sqrt x + 3}} = \dfrac{{5\sqrt x + 24}}{{\sqrt x + 3}}$
Nên:
$\begin{array}{l}
N - 8 = \dfrac{{5\sqrt x + 24}}{{\sqrt x + 3}} - 8\\
= \dfrac{{5\sqrt x + 24 - 8\left( {\sqrt x + 3} \right)}}{{\sqrt x + 3}}\\
= \dfrac{{ - 3\sqrt x }}{{\sqrt x + 3}}\\
\le 0,\forall x\\
\Rightarrow N - 8 \le 0,\forall x\\
\Rightarrow N \le 8
\end{array}$
Dấu bằng xảy ra
$ \Leftrightarrow \sqrt x = 0 \Leftrightarrow x = 0$
Vậy $MaxN=8 \Leftrightarrow x = 0$
r) Ta có:
$B = \dfrac{{5\sqrt x - 6}}{{\sqrt x + 3}} = 5 - \dfrac{{21}}{{\sqrt x + 3}}$
Để $B \in Z$
$\begin{array}{l}
\Leftrightarrow 5 - \dfrac{{21}}{{\sqrt x + 3}} \in Z\\
\Leftrightarrow \dfrac{{21}}{{\sqrt x + 3}} \in Z
\end{array}$
Mà $x \in N$
$ \Rightarrow \left( {\sqrt x + 3} \right) \in U\left( {21} \right)$
Mặt khác: $\sqrt x + 3 \ge 3,\forall x$
$\begin{array}{l}
\Rightarrow \left( {\sqrt x + 3} \right) \in \left\{ {3;7;21} \right\}\\
\Rightarrow \sqrt x \in \left\{ {0;4;18} \right\}\\
\Rightarrow x \in \left\{ {0;16;324} \right\}
\end{array}$
Vậy $x \in \left\{ {0;16;324} \right\}$ thỏa mãn đề.