Giải thích các bước giải:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[3]{{x + 1}} - \sqrt {1 - x} }}{x}\\
= \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt[3]{{x + 1}} - 1} \right) + \left( {1 - \sqrt {1 - x} } \right)}}{x}\\
= \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{x + 1 - 1}}{{{{\sqrt[3]{{x + 1}}}^2} + \sqrt[3]{{x + 1}} + 1}} + \frac{{1 - 1 + x}}{{1 + \sqrt {1 - x} }}}}{x}\\
= \mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{{{{\sqrt[3]{{x + 1}}}^2} + \sqrt[3]{{x + 1}} + 1}} + \frac{1}{{1 + \sqrt {1 - x} }}} \right)\\
= \frac{1}{{1 + 1 + 1}} + \frac{1}{{1 + 1}} = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}
\end{array}\)