Bài 2:
Xét tam giác ACD và tam giác ACB có đáy AB $=\frac{3}{4}$ đáy CD, chiều cao hạ từ A xuống CD bằng chiều cao hạ từ C xuống AB nên $\frac{S_{ABC}}{S_{ACD}}=\frac{3}{4}$
Diện tích tam giác ADC là:
$128:(3+4)\times4=\frac{512}{7}$ ($cm^{2}$ )
Xét tam giác ACD và tam giác ACB có chung đáy AC, $\frac{S_{ABC}}{S_{ACD}}=\frac{3}{4}$ nên chiều cao hạ từ B xuống AC bằng $\frac{3}{4}$ chiều cao hạ từ D xuống AC
Xét tam giác AOD và tam giác ABO có chung đáy AO, chiều cao hạ từ B xuống AC bằng $\frac{3}{4}$ chiều cao hạ từ D xuống AO nên $\frac{S_{ABO}}{S_{ADO}}=\frac{3}{4}$
Diện tích tam giác ABD là:
$128:(3+4)\times3=\frac{384}{7}$ ($cm^{2}$ )
Diện tích tam giác AOD là:
$\frac{384}{7}:(3+4)\times4=\frac{1536}{49}$ ($cm^{2}$ )
Diện tích tam giác DOC là:
$\frac{512}{7}-\frac{1536}{49}=\frac{2048}{49}$ ($cm^{2}$ )
ĐS: $\frac{2048}{49}$ $cm^{2}$