Bài 1: Phân tích đa thức thành nhân tử:
a) 2x(x+1)+2(x+1)
b) y2(x2+y)−zx2−zy
c) 4x(x−2y)+8y(2y−x)
d) 3x(x+1)2−5x2(x+1)+7(x+1)
e) x2−6xy+9y2
f) x3+6x2y+12xy2+8y3
g) x3−64
h) 125x3+y6
k) 0,125(a+1)3−1
t) x2−2xy+y2−xz+yz
q) x2−y2−x+y
p) a3x−ab+b−x
đ) 3x2(a+b+c)+36xy(a+b+c)+108y2(a+b+c)
l) x2−x−6
i) x4+4x2−5
m) x3−19x−30
j) x4+x+1
y) ab(a−b)+bc(b−c)+ca(c−a)
o) (a+b+c)3−a3−b3−c3
ê) 4a2b2−(a2+b2+c2)2
w) (1+x2)2−4x(1−x2)
z) (x2−8)2+36
u) 81x4+4
Bài 2 : Tìm x
a)(2x−1)2−25=0
b) 8x3−50x=0
c) (x−2)(x2+2+7)+2(x2−4)−5(x−2)=0
d) 3x(x−1)+x−1=0
e) 2(x+3)−x2−3x =0
f) 4x2−25−(2x−5)(2x+7)=0
g) x3+27+(x+3)(x−9)=0