Bài 1,
a) P = 1 + 6 + $6^{2}$ + $6^{3}$ + ... + $6^{99}$
6P = 6 + $6^{2}$ + $6^{3}$ + ... + $6^{100}$
6P - P = ( 6 + $6^{2}$ + $6^{3}$ + ... + $6^{100}$ ) - ( 1 + 6 + $6^{2}$ + $6^{3}$ + ... + $6^{99}$ )
5P = $6^{100}$ - 1
⇒ P = $\frac{6^{100} - 1}{5}$
b) Q= 2 + $2^{3}$ + $2^{5}$ + ... + $2^{99}$
$2^{2}$ Q = $2^{3}$ + $2^{5}$ + $2^{7}$ + ... + $2^{101}$
4Q - Q = ( $2^{3}$ + $2^{5}$ + $2^{7}$ + ... + $2^{101}$ ) - ( 2 + $2^{3}$ + $2^{5}$ + ... + $2^{99}$ )
3Q = $2^{101}$ - 2
⇒ Q = $\frac{2^{101} - 2}{3}$
Bài 2
a) $x^{2}$ = 4
⇒ $x^{2}$ = $2^{2}$
⇒ x = 2
b) $x^{2}$ = 81
⇒ $x^{2}$ = $9^{2}$
⇒ x = 9
c) 6. $x^{3}$ - 8 = 40
⇒6. $x^{3}$ = 48
⇒ $x^{3}$ = 8
⇒ $x^{3}$ = $2^{3}$
⇒ x = 2
d) x+1 =64
⇒ x = 63