Cho x, y, z là những số thực tùy ý. Tìm giá trị lớn nhất, nhỏ nhất của hàm số sau trên tập xác định của nó :
\(y=\sqrt{x-1}+\sqrt{5-x}\)
- Áp dụng BĐT Bunhia- Cốp xki ta có: \(\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)\)\(=2.4=8\). Suy ra: \(\sqrt{x-1}+\sqrt{5-x}\le2\sqrt{2}\). Vậy max \(\sqrt{x-1}+\sqrt{5-x}=2\sqrt{2}\) khi: \(\sqrt{x-1}=\sqrt{5-x}\)\(\Leftrightarrow x-1=5-x\)\(\Leftrightarrow x=3\). - Ta có: \(\sqrt{x-1}+\sqrt{5-x}\ge\sqrt{x-1+5-x}=\sqrt{4}=2\). Vậy GTNN của \(\sqrt{x-1}+\sqrt{5-x}=2\) khi: \(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\).
Bài 12 (SBT trang 106)
Cho x, y, z là những số thực tùy ý.
Tìm giá trị lớn nhất của hàm số \(y=4x^3-x^4\) với \(0\le x\le4\)
Bài 11 (SBT trang 106)
Tìm giá trị nhỏ nhất của hàm số :
\(y=\dfrac{4}{x}+\dfrac{9}{1-x}\) với \(0< x< 1\)
Bài 10 (SBT trang 106)
Cho a, b, c, d là những số dương.
Chứng minh rằng :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)
Bài 9 (SBT trang 106)
\(\left(\sqrt{a}+\sqrt{b}\right)^2\ge2\sqrt{2\left(a+b\right)\sqrt{ab}}\)
Bài 8 (SBT trang 106)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Bài 7 (SBT trang 106)
\(a^2b+\dfrac{1}{b}\ge2a\)
Bài 6 (SBT trang 106)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{16}{a+b+c+d}\)
Bài 5 (SBT trang 106)
\(\dfrac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)
Bài 4 (SBT trang 106)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
Bài 3 (SBT trang 106)
\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến