Gọi chữ số hàng chục của số tự nhiên có hai chữ số cần tìm là `x ` (`x` là chữ số ; `x \ne 0`)
Thì chữ số hàng đơn vị của số tự nhiên cần tìm là `14 - x`
Số tự nhiên cần tìm là `\overline{x (14-x)}`
Khi viết thêm số chữ số `1` vào giữa hai chữ số của số cần tìm thì ta được số mới là `\overline{x1(14-x)}`
Vì số mới lớn hơn số đã cho `550` đơn vị nên ta có :
`\overline{x1(14-x)} - \overline{x (14-x)} = 550`
`<=> (100x + 10 + 14 - x )- (10x + 14-x) = 550`
`<=>( 99x + 24 ) -(9x+14) = 550`
`<=> 99x + 24 - 9x - 14 = 550`
`<=> 90x + 10= 550`
`<=> 90x = 540`
`<=> x = 6` (thỏa mãn)
Vậy chữ số hàng đơn vị của số cần tìm là `6`
`=>` Chữ số hàng chục của số cần tìm là ` 14 - 6 = 8`
Vậy số cần tìm là `68`