Xét tích \(a\left(b+2001\right)=ab+2001a\). \(b\left(a+2001\right)=ab+2001b\). Vì \(b>0\) nên \(b+2001>0\). a) Nếu \(a>b\) thì \(ab+2001a>ab+2001b\) \(a\left(b+2001\right)>b\left(a+2001\right)\) \(\Rightarrow\dfrac{a}{b}>\dfrac{a+2001}{b+2001}\) (theo bài 5). b) Tương tự (theo bài 5) nếu \(a< b\) thì \(\Rightarrow\dfrac{a}{b}< \dfrac{a+2001}{b+2001}\). c) Nếu \(a=b\) thì rõ ràng \(\dfrac{a}{b}=\dfrac{a+2001}{b+2001}\).