`#Sad`
`\text{·Bài}` `9:`
`d)`
`Q= x(x-y)^2-y(x-y)^2+xy^2-x^2y`
`= [x(x-y)^2-y(x-y)^2]+xy(y-x)`
`= (x-y)^3-xy(x-y)`
`\text{→Thay}` `x-y=7; x.y=9` `\text{vào ta có:}`
`= 7^3-9. 7`
`= 343-63`
`= 280`
`\text{·Bài}` `10:`
`a)`
`2-x = 2(x-2)^3`
`⇔ 2-x-2(x-2)^3 = 0`
`⇔ (-x+2)-2(x-2)^3 = 0`
`⇔ (x-2)-2(x-2)^3 = 0`
`⇔ (x-2)[1-2(x-2)^2] = 0`
`\text{→Vì}` `(x-2)^2 >= 0`
`⇒` `1-2(x-2)^2 >= 1`
`\text{→Mà:}` `(x-2)^2 = 1/2` `\text{(loại)}`
`⇔ x-2 = 0`
`⇔ x = 2`
`\text{Vậy S=}` `{2}`
`b)`
`8x^3-72x = 0`
`⇔ 8x(x^2-9) = 0`
`⇔ 8x(x-3)(x+3) = 0`
`⇔` \(\left[ \begin{array}{l}8x=0\\x-3=0\\x+3=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=0\\x=3\\x=-3\end{array} \right.\)
`\text{Vậy S=}` `{0; 3; -3}`
`c)`
`(x-1,5)^6+2(1,5-x)^2 = 0`
`⇔ (x-1,5)^6+2(x-1,5)^2 = 0`
`⇔ (x-1,5)^2[(x-1,5)^4+2] = 0`
`\text{→Vì:}` `(x-1,5)^4 >= 0`
`\text{→Mà:}` `(x-1,5)^4 = -2` `\text{(loại)}`
`⇔ (x-1,5)^2 = 0`
`⇔ x-1,5 = 0`
`⇔ x = 1,5`
`\text{Vậy S=}` `{1,5}`
`d)`
`2x^3+3x^2+3+2x = 0`
`⇔ (2x^3+2x)+(3x^2+3) = 0`
`⇔ 2x(x^2+1)+3(x^2+1) = 0`
`⇔ (x^2+1)(2x+3) = 0`
`\text{→Vì:}` `x^2 >= 0`
`⇒ x^2+1 >= 1`
`\text{→Mà:}` `x^2 = -1` `\text{(loại)}`
`⇔ 2x+3 = 0`
`⇔ 2x = -3`
`⇔ x = -3/2`
`\text{Vậy S=}` `{-3/2}`
`e)`
`x^2(x+1)-x(x+1)+x(x-1) = 0`
`⇔ [x^2(x+1)-x(x+1)]+x(x-1) = 0`
`⇔ (x^2-x)(x+1)+x(x-1) = 0`
`⇔ x(x-1)(x+1)+x(x-1) = 0`
`⇔ x(x-1)(x+1+1) = 0`
`⇔ x(x-1)(x+2) = 0`
`⇔` \(\left[ \begin{array}{l}x=0\\x-1=0\\x+2=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=0\\x=1\\x=-2\end{array} \right.\)
`\text{Vậy S=}` `{0; 1; -2}`
`f)`
`x^3-4x-14x(x-2) = 0`
`⇔ (x^3-4x)-14x(x-2) = 0`
`⇔ x(x^2-4)-14x(x-2) = 0`
`⇔ x(x-2)(x+2)-14x(x-2) = 0`
`⇔ x(x-2)(x+2-14) = 0`
`⇔ x(x-2)(x-12) = 0`
`⇔` \(\left[ \begin{array}{l}x=0\\x-2=0\\x-12=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=0\\x=2\\x=12\end{array} \right.\)
`\text{Vậy S=}` `{0; 2; 12}`