Đáp án: Gọi độ dài quãng đường AB là `s (km)`.
Thời gian đi nửa đoạn đường đầu là:
$t_1 = \dfrac{s}{2.v_1} = \dfrac{s}{2.30} = \dfrac{s}{60} (h)$
Gọi thời gian đi nửa đoạn đường sau là $t_2$ (h).
Quãng đường đi được trong nửa thời gian đầu là:
$s_2 = v_2.\dfrac{t_2}{2} = \dfrac{25.t_2}{2} = \dfrac{25t_2}{2} (km)$
Quãng đường đi được trong nửa thời gian sau là:
$s_2 ' = v_3.\dfrac{t_2}{2} = \dfrac{15t_2}{2} (km)$
Mà: $s_1 + s_2 = \dfrac{s}{2}$ nên ta có:
$\dfrac{25t_2}{2} + \dfrac{15t_2}{2} = \dfrac{s}{2} \to 40t_2 = s \to t_2 = \dfrac{s}{40} (h)$
Vận tốc trung bình của người đi xe máy trên cả quãng đường là:
$v_{tb} = \dfrac{s}{t_1 + t_2} = \dfrac{s}{\dfrac{s}{60} + \dfrac{s}{40}} = \dfrac{40.60}{40 + 60} = 24 (km/h)$