Đáp án:
1. 20
2. 4320
3. 18
Giải thích các bước giải:
1.
Th1: Tam giác được tạo thành bởi 2 điểm thuộc d1, 1 điểm thuộc d2
-> có \(C_{10}^2.C_n^1 = 45n\) tam giác
Th2: Tam giác được tạo thành bởi 2 điểm thuộc d2, 1 điểm thuộc d1
-> có \(C_{10}^1.C_n^2 = 10.\frac{{n(n - 1)}}{{2!}} = 5{n^2} - 5n\) tam giác
-> số tam giác là 45n+\(5{n^2} - 5n\)=2800
-> n=-28 (loại) hoặc n=20 (tm)
2. Giả sử số cần tìm có dạng abcdefg
Chọn a có 6 cách (khác 9)
Chọn bcdefg có 6!
-> lập được 6.6!=4320 số
3. Chọn ra 2 trong n đỉnh ta được 1 cạnh của đa giác hoặc 1 đường chéo
-> tổng số cạnh và đường chéo là: \(C_n^2\)
-> số đường chéo là: \(C_n^2 - n = \frac{{n(n - 1)}}{2} - n = \frac{{{n^2} - 3n}}{2} = 135\)
<-> \({n^2} - 3n - 2.135 = 0\)
-> n=-15 (loại) hoặc n=18(tm)