Giải thích các bước giải:
$\begin{array}{l} \frac{{3z - 4y}}{5} = \frac{{5y - 3x}}{4} = \frac{{4x - 5z}}{3}\\ \Rightarrow \left\{ \begin{array}{l} \frac{{3z}}{5} + \frac{{3x}}{4} = \frac{{9y}}{{20}}\\ \frac{{5y}}{4} + \frac{{5z}}{3} = \frac{{25x}}{{12}} \end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l} \frac{{4z}}{3} + \frac{{5x}}{3} = y\\ \frac{5}{4}(\frac{{4z}}{3} + \frac{{5x}}{3}) + \frac{{5z}}{3} = \frac{{25x}}{{12}} \end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l} \frac{{4z}}{3} + \frac{{5x}}{3} = y\\ \frac{{5z}}{3} + \frac{{25x}}{{12}} + \frac{{5z}}{3} = \frac{{25x}}{{12}} \end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l} \frac{{4z}}{3} + \frac{{5x}}{3} = y\\ \frac{{5z}}{3} + \frac{{25x}}{{12}} + \frac{{5z}}{3} = \frac{{25x}}{{12}} \end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l} z = 0\\ y = \frac{{5x}}{3} \end{array} \right. \end{array}$
Vì ${x^2} - {z^2} = 36$
$ \Rightarrow \left[ \begin{array}{l} x = 6 \Rightarrow y = 10\\ x = - 6 \Rightarrow y = - 10 \end{array} \right.$