Áp dụng BĐT Cosi cho 2 số dương
$a^{2}+4\geq4a$ $=>a^{2}\geq4a-4$
$b^{2}+1\geq2b$ $=>b^{2}\geq2a-1$
Đặt H= $a^{2}+b^{2}+\frac{1}{a}+\frac{1}{a+b}$
$=a^{2}+b^{2}+\frac{a}{4}+\frac{1}{a}+\frac{a+b}{9}+\frac{1}{a+b}-\frac{a}{4}-\frac{a+b}{9}$ $=>H\geq4a-4+2b-1+\frac{a}{4}+\frac{1}{a}+\frac{a+b}{9}+\frac{1}{a+b}-\frac{a}{4}-\frac{a+b}{9}$ $=>H\geq2b+\frac{a}{4}+\frac{1}{a}+\frac{a+b}{9}+\frac{1}{a+b}+\frac{15a}{4}-\frac{a}{9}-\frac{b}{9}-5$
Áp dụng BĐT cosi cho 2 số dương
$\frac{a}{4}+\frac{1}{a}\geq1$
$\frac{a+b}{9}+\frac{1}{a+b}\geq\frac{2}{3}$
$=>H\geq1+\frac{2}{3}+\frac{131a}{36}+\frac{17b}{9}-5$
$=>H\geq\frac{-10}{3}+\frac{131a}{36}+\frac{68b}{36}$
$=>H\geq-\frac{10}{3}+\frac{131a+68b}{36}$
$=>H\geq-\frac{10}{3}+\frac{68(a+b)+63a}{36}$
$=>H\geq-\frac{10}{3}+\frac{68.3+63.2}{36}$ ( vì $a\geq2;a+b\geq3$)
$=>H\geq\frac{35}{6}$
Dấu "=" xảy ra <=> a=2 và b=1 và a+b=3 <=> a=2 và b=1
Vậy min H= $\frac{35}{6}$<=> a=2 và b=1