Cho a,b >0 và a+b=1 .Tìm Min M=\(\left(1+\dfrac{1}{a}\right)^2+\left(1+\dfrac{1}{b}\right)^2\)
\(M=1+\dfrac{1}{a^2}+\dfrac{2}{a}+1+\dfrac{1}{b^2}+\dfrac{2}{b}=2+2\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)
Theo BĐT Cauchy-Swarch ta có
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.\dfrac{4}{a+b}=8\)
áp dụng BĐT AM-GM ta có
\(\dfrac{1}{a^2}+4\ge2\sqrt{\dfrac{1}{a^2}.4}=\dfrac{4}{a}\) ; \(\dfrac{1}{b^2}+4\ge2\sqrt{\dfrac{1}{b^2}.4}=\dfrac{4}{b}\)
Cộng hai vế BĐT trên lại ta được
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+8\ge\dfrac{4}{a}+\dfrac{4}{b}=4\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge16\)
\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge16-8=8\)
\(\Rightarrow M\ge2+8+8=18\) vậy MinM=18 tại x=y=1/2
hỏi tam giác ABC là tam giác ji biết rằng các góc của tam giác tỉ lệ với 1,2,3
Rút gọn biểu thức P=(1-sina+cosa)/(1-sina-cosa)
Cho tam giác ABC. Xác định vị trí các điểm M thỏa mãn: \(\overrightarrow{MA}+2\overrightarrow{MB}=\overrightarrow{0}\)
Tìm m để hệ phương trình có nghiệm thực
x+1/x+y+1/y=5
x^3+1/x^3+y+1/y^3=15m-10
cm \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\) ≥ 9
B=1+5+52+53+...+52008+52009
Giải Phương trình sau :
1. \(3-\sqrt{x^2-4x+3}-3x=0\)
2. \(\left(\sqrt{3-x}-\sqrt{x+2}-1\right)\left(81-x^4\right)=0\)
GIÚP EM GIẢI VỚI Ạ XIN CẢM ƠN !!!
Các tính \(\widehat{A}\) khi biết COS A
Tìm số nguyên n thỏa mãn điều kiện n+5 chia hết cho 2n-1
Cho đa thức P(x) = \(x^5+ax^4\:+bx^3+cx^2+dx+e\)
Và cho biết: \(P\left(1\right)=1;P\left(2\right)=4;P\left(3\right)=9;P\left(4\right)=16;P\left(5\right)=25\)
Tính: \(P\left(6\right);P\left(7\right);P\left(8\right);P\left(9\right)\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến