Đáp án: $P\le 3$
Giải thích các bước giải:
Ta có:
$P=\sum\dfrac{ab}{\sqrt{a^2+b^2+2c^2}}$
$\to P=\sum\dfrac{ab}{\sqrt{\left(a^2+c^2\right)+\left(b^2+c^2\right)}}$
$\to P\le\sum\dfrac{ab}{\sqrt{\dfrac12\left(a+c\right)^2+\dfrac12\left(b+c\right)^2}}$
$\to P\le\sum\dfrac{ab}{\sqrt{\dfrac12\left(\left(a+c\right)^2+\left(b+c\right)^2\right)}}$
$\to P\le\sum\dfrac{ab}{\sqrt{\dfrac12\cdot 2\left(a+c\right)\left(b+c\right)}}$
$\to P\le\sum\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}$
$\to P\le\sum\dfrac{\sqrt{ab}}{\sqrt{a+c}}\cdot \dfrac{\sqrt{ab}}{\sqrt{b+c}}$
$\to P\le\sum\dfrac12\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)$
$\to P\le\dfrac12\cdot\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)$
$\to P\le\dfrac12\left(a+b+c\right)$
$\to P\le 3$
Dấu = xảy ra khi $a=b=c=2$