cho a,b là 2 số dương thỏa mãn : \(\sqrt{ab}=\dfrac{a+b}{a-b}\)
tìm Min \(P=ab+\dfrac{a-b}{\sqrt{ab}}\)
Lời giải:
Do \(a,b>0\Rightarrow a-b=\frac{a+b}{\sqrt{ab}}>0\Rightarrow a> b\)
Đặt \(a=tb (t>1)\)
Theo đề bài ta có: \(\sqrt{tb^2}=\frac{tb+b}{tb-b}\Leftrightarrow b\sqrt{t}=\frac{t+1}{t-1}\)
\(\Leftrightarrow b=\frac{t+1}{\sqrt{t}(t-1)}\)\(\Rightarrow a=bt=\frac{\sqrt{t}(t+1)}{t-1}\)
Khi đó: \(P=\frac{(t+1)^2}{(t-1)^2}+\frac{t-1}{\sqrt{t}}\)
\(\Leftrightarrow P=\frac{(t-1)^2+4t}{(t-1)^2}+\frac{t-1}{\sqrt{t}}=1+\frac{4t}{(t-1)^2}+\frac{t-1}{\sqrt{t}}\)
Áp dụng BĐT AM-GM với \(t>1\)
\(\frac{4t}{(t-1)^2}+\frac{t-1}{\sqrt{t}}=\frac{4t}{(t-1)^2}+\frac{t-1}{2\sqrt{t}}+\frac{t-1}{2\sqrt{t}}\geq 3\sqrt[3]{1}=3\)
\(\Rightarrow P\geq 1+3\Leftrightarrow P\geq 4\Leftrightarrow P_{\min}=4\)
Dấu bằng xảy ra khi \(8t\sqrt{t}=(t-1)^3\Leftrightarrow t=3+2\sqrt{2}\)
Giúp mk với ạ, mai mk cần rồi
Trong Oxy cho A (1,2) B (-2,1) C(0,2)
a. Chứng tỏ A, B, C không thẳng hàng
b. Tìm tọa độ trọng tâm G của tam giác ABC
c. Tìm tọa độ điểm N sao cho A là trọng tâm của tam giác ABC
Cho a, b, c, d > 0. CMR \(\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\ge\dfrac{2}{3}\)
cho các số nguyên m,n,p thoả mãn;
m+n+p=2014
Chứng minh : m3+n3+p3 - 4 \(⋮\) 6
Giải bất phương trình 2x-3<(1+x )(2-x )
\(\left\{{}\begin{matrix}2x^2+y^2-3xy+3x-2y+1=0\\4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y}\end{matrix}\right.\)
Cho tam giác ABC có \(\widehat{A}\) =\(60^o\) .CMR :
BC2 = AB2 + AC2 - AB.AC
Bài 2.61 - Đề toán tổng hợp (SBT trang 105)
Trong mặt phẳng Oxy cho tam giác ABC có \(A\left(1;2\right);B\left(-3;1\right)\) và trực tâm \(H\left(-2;3\right)\). Hãy tìm tọa độ đỉnh C ?
1-1/2+2-2/3+3-3/4+4-1/4-3-1/3-1/3-2-1/2-1
Cho a,b,c,d là số dương. Cmr
a/ \(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{c}\right)\left(c+\dfrac{1}{a}\right)\ge8\)
b/ \(\dfrac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)
cho tam giác ABC có 3 cạnh góc nhọn trung tuyến AM có độ dài bằng cạnh BC. Đường tròn đường kính BC cắt các cạnh AB,AC theo thứ tự D và E. đường tròn ngoại tiếp tam giác ADE và đường tròn ngoại tiếp tam giác ABC cắt AM lần lượt tịa I và J.chứng minh BDIM nội tiếp, BIJC là hình bình hành
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến