Cho \(a\) và \(b\) lần lượt là số hạng thứ hai và thứ mười của một cấp số cộng có công sai \(d \ne 0.\) Giá trị của biểu thức \({\log _2}\left( {\dfrac{{b - a}}{d}} \right)\) là một số nguyên có số ước tự nhiên bằng A.\(3\). B.\(1\). C.\(2\). D.\(4\).
Đáp án đúng: C Giải chi tiết:Gọi cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng thứ hai là \(a = {u_2} = {u_1} + d\) và số hạng thứ \(10\) là \(b = {u_{10}} = {u_1} + 9d\) Khi đó \({\log _2}\left( {\dfrac{{b - a}}{d}} \right) = {\log _2}\left( {\dfrac{{{u_1} + 9d - {u_1} - d}}{d}} \right) = {\log _2}\left( {\dfrac{{8d}}{d}} \right) = {\log _2}8 = 3.\) Các ước tự nhiên của \(3\) là \(1\) và \(3.\) Chọn C.