Cho \(a,\,\,b,\,\,c\) là các số thực dương thỏa mãn \(a + b + c = 1\). Tìm giá trị nhỏ nhất của biểu thức
\(Q = \dfrac{{{{\left( {1 - c} \right)}^2}}}{{\sqrt {2{{\left( {b + c} \right)}^2} + bc} }} + \dfrac{{{{\left( {1 - a} \right)}^2}}}{{\sqrt {2{{\left( {c + a} \right)}^2} + ca} }} + \dfrac{{{{\left( {1 - b} \right)}^2}}}{{\sqrt {2{{\left( {a + b} \right)}^2} + ab} }}\)
A.\(1\)
B.\(\dfrac{4}{3}\)
C.\(\dfrac{2}{3}\)
D.\(\dfrac{3}{2}\)