Đáp án:
b) \(Min = - \dfrac{1}{3}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)A = \dfrac{{\sqrt x }}{{2\sqrt x + 1}} + \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {2\sqrt x + 1} \right)}}.\left[ {\dfrac{{2x\sqrt x - x - \sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}} - \dfrac{{\sqrt x \left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}} \right]\\
= \dfrac{{\sqrt x }}{{2\sqrt x + 1}} + \dfrac{{\sqrt x + 1}}{{2\sqrt x + 1}}.\dfrac{{2x\sqrt x - x - \sqrt x - \sqrt x \left( {x - \sqrt x + 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}\\
= \dfrac{{\sqrt x }}{{2\sqrt x + 1}} + \dfrac{{\sqrt x + 1}}{{2\sqrt x + 1}}.\dfrac{{x\sqrt x - 2\sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}\\
= \dfrac{{\sqrt x }}{{2\sqrt x + 1}} + \dfrac{{x\sqrt x - 2\sqrt x }}{{\left( {2\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}\\
= \dfrac{{\sqrt x \left( {x - \sqrt x + 1} \right) + x\sqrt x - 2\sqrt x }}{{\left( {2\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}\\
= \dfrac{{x\sqrt x - x + \sqrt x + x\sqrt x - 2\sqrt x }}{{\left( {2\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}\\
= \dfrac{{2x\sqrt x - x - \sqrt x }}{{\left( {2\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}\\
= \dfrac{{\sqrt x \left( {\sqrt x - 1} \right)\left( {2\sqrt x + 1} \right)}}{{\left( {2\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}\\
= \dfrac{{x - \sqrt x }}{{x - \sqrt x + 1}}\\
Thay:x = 7 - 4\sqrt 3 \\
= 4 - 2.2.\sqrt 3 + 3\\
= {\left( {2 - \sqrt 3 } \right)^2}\\
\to A = \dfrac{{7 - 4\sqrt 3 - \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} }}{{7 - 4\sqrt 3 - \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} + 1}} = \dfrac{{1 - \sqrt 3 }}{3}\\
2)A = \dfrac{{x - \sqrt x + 1 - 1}}{{x - \sqrt x + 1}} = 1 - \dfrac{1}{{x - \sqrt x + 1}}\\
= 1 - \dfrac{1}{{x - 2\sqrt x .\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{3}{4}}}\\
= 1 - \dfrac{1}{{{{\left( {\sqrt x - \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}}\\
Do:{\left( {\sqrt x - \dfrac{1}{2}} \right)^2} \ge 0\forall x \ge 0\\
\to {\left( {\sqrt x - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \ge \dfrac{3}{4}\\
\to \dfrac{1}{{{{\left( {\sqrt x - \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}} \le \dfrac{4}{3}\\
\to - \dfrac{1}{{{{\left( {\sqrt x - \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}} \ge - \dfrac{4}{3}\\
\to 1 - \dfrac{1}{{{{\left( {\sqrt x - \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}} \ge - \dfrac{1}{3}\\
\to Min = - \dfrac{1}{3}\\
\Leftrightarrow \sqrt x - \dfrac{1}{2} = 0\\
\to x = \dfrac{1}{4}
\end{array}\)