`***`Lời giải`***`
a)
ĐKXĐ: `a≥0;ane4`
`P=\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}} `
`=\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{a+3\sqrt{a}-2\sqrt{a}-6}-\frac{1}{\sqrt{a}-2} `
`=\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{\sqrt{a}(\sqrt{a}+3)-2(\sqrt{a}+3)}-\frac{1}{\sqrt{a}-2} `
`=\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{(\sqrt{a}-2)(\sqrt{a}+3)}-\frac{1}{\sqrt{a}-2} `
`=\frac{(\sqrt{a}+2)(\sqrt{a}-2)-5-(\sqrt{a}+3)}{(\sqrt{a}-2)(\sqrt{a}+3)} `
`=\frac{a-4-5-\sqrt{a}-3}{(\sqrt{a}-2)(\sqrt{a}+3)} `
`=\frac{a-\sqrt{a}-12}{(\sqrt{a}-2)(\sqrt{a}+3)} `
`=\frac{a+3\sqrt{a}-4\sqrt{a}-12}{(\sqrt{a}-2)(\sqrt{a}+3)} `
`=\frac{\sqrt{a}(\sqrt{a}+3)-4(\sqrt{a}+3)}{(\sqrt{a}-2)(\sqrt{a}+3)} `
`=\frac{(\sqrt{a}-4)(\sqrt{a}+3)}{(\sqrt{a}-2)(\sqrt{a}+3)} `
`=\frac{\sqrt{a}-4}{\sqrt{a}-2} `
Vậy `P=\frac{\sqrt{a}-4}{\sqrt{a}-2} ` với `a≥0;ane4`
b)
Ta có: `P<1<=>P-1<0`
`=>\frac{\sqrt{a}-4}{\sqrt{a}-2}-1<0`
`<=>\frac{\sqrt{a}-4-(\sqrt{a}-2)}{\sqrt{a}-2}<0`
`<=>\frac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}<0`
`<=>\frac{-2}{\sqrt{a}-2}<0`
Mà `-2<0`
`=>\sqrt{a}-2>0`
`<=>\sqrt{a}>2`
`<=>a>4(N)`
Vậy `a>4` để `P<1`