a)
`C=\sqrt{x}/(x.\sqrt{x}-1)+1/(\sqrt{x}-1) : (\sqrt{x}+1)/(x+\sqrt{x}+1)`
`C=(\sqrt{x}+x+\sqrt{x}+1)/[(\sqrt{x}-1)(x+\sqrt{x}+1)] : (\sqrt{x}+1)/(x+\sqrt{x}+1)`
`C=(\sqrt{x}+1)^2/[(\sqrt{x}-1)(x+\sqrt{x}+1)] : (\sqrt{x}+1)/(x+\sqrt{x}+1)`
`C=(\sqrt{x}+1)/(\sqrt{x}-1)`
b)
Câu này làm theo gợi ý, thực sự lần đầu thấy dạng
Ta có:
`x>1`
`⇔\sqrt{x}>1`
`⇔\sqrt{x}-1>0`
`⇔2/(\sqrt{x}-1)>0 `
`⇔(\sqrt{x}+1-(\sqrt{x}-1))/(\sqrt{x}-1) >0`
`⇔(\sqrt{x}+1)/(\sqrt{x}-1) -1 >0`
`⇔(\sqrt{x}+1)/(\sqrt{x}-1) >1 `
`⇔C>1`
`⇔C^2>C`
`⇔C^2>\sqrt{C}^2`
`⇔C>\sqrt{C}`