Cho đa giác đều 60 đỉnh nội tiếp một đường tròn. Số tam giác tù được tạo thành từ 3 trong 60 đinh của đa giác là: A.34220. B. 16420. C. 48720. D. 24360.
Đáp án đúng: D Giải chi tiết: Xét đa giác đều 60 đỉnh nội tiếp đường tròn tâm O (như hình vẽ). Mỗi cạnh của đa giác này chắn một cung (nhỏ) có số đo \(\frac{{{360}^{0}}}{60}={{6}^{0}}\) \(\Rightarrow \) Mỗi tam giác có 3 đỉnh chọn ngẫu nhiên từ 60 đỉnh của đa giác đều này thì độ lớn các góc của tam giác đều là bội của \({{3}^{0}}\). Gọi A là biến cố tam giác thu được là tam giác tù. Ta tính \(n(A)\,\,?\) - Chọn đỉnh tù có: 60 cách chọn. - Chọn 2 đỉnh còn lại: 1) Nếu góc tù bằng \({{180}^{0}}-{{2.3}^{0}}\), tức là tổng hai góc nhọn là \({{2.3}^{0}}\) thì có: \(1\) cách chọn. 2) Nếu góc tù bằng \({{180}^{0}}-{{3.3}^{0}}\), tức là tổng hai góc nhọn là \({{3.3}^{0}}\) thì có: 2 cách chọn. 3) Nếu góc tù bằng \({{180}^{0}}-{{4.3}^{0}}\), tức là tổng hai góc nhọn là \({{4.3}^{0}}\) thì có: 3 cách chọn. … 28) Nếu góc tù bằng \({{180}^{0}}-{{29.3}^{0}}\), tức là tổng hai góc nhọn là \({{29.3}^{0}}\) thì có: 28 cách chọn. \(\Rightarrow n(A)=60.\left( 1+2+3+...+28 \right)=60.\frac{28\left( 1+28 \right)}{2}=24360\) Vậy số tam giác tù được lập thành là 24360 tam giác. Chọn: D