Cho đa thức f(x) thỏa mã điều kiện :
x.f(x-2) = (x-4) .f(x)
Chứng minh rằng đa thức f(x) có ít nhất 2 nghiệm .
giúp mình nhé các bạn !!!
Với x=0 ta có:
0=-4.f(0)
=>f(0)=0
=>0 là 1 nghiệm của f(x)(1)
Với x=4 ta có:
4.f(4-2)=0
<=>4.f(2)=0
<=>f(2)=0
=>2 là 1 nghiệm của f(x)(2)
Từ 1 và 2 =>f(x) luôn có 2 nghiệm là 0 và 2 hay f(x) có ít nhất 2 nghiệm
cho 2 số tự nhiên a, b thỏa mãn đk a+b=2005 tìm gtln của tích ab
cho a,b,c > 0 và a+b+c=4
tính max A= \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Tìm giá trị nhỏ nhất của biểu thức A = \(3x^2-\dfrac{9x}{4}+\dfrac{3}{16x}\) với x dương.
Bài 1:Cho 0<=a;b;c<=2.a+b+c=3
CM:3<=a^3+b^3+c^3-3(a-1)(b-1)(c-1)<=9
Bài 2: Cho -1<=a;b;c<=2.a+b+c=0.CM:
a,a^2+b^2+c^2<=6
b,2abc<=a^2+b^2+c^2<=2abc+2
c,a^2+b^2+c^2<=8-abc
Chứng minh |a|-|b|< |a+b|<|a|+|b|
1)Cho 3 số a,b,c dương thỏa mãn ab+bc+ca=3abc.
tìm Max \(\dfrac{11a+4b}{4a^2-ab+2b^2}+\dfrac{11b+4c}{4b^2-bc+2c^2}+\dfrac{11c+4a}{4c^2-ca+2a^2}\)
2) cho a,b,c là các số dương thỏa mãn abc=1.CMR
\(\dfrac{1}{a^5+b^2+c^2}+\dfrac{1}{a^2+b^5+c^2}+\dfrac{1}{a^2+b^2+c^5}\le\dfrac{3}{a^2+b^2+c^2}\)
3) cho a,b,c>0 thỏa mãn a+b+c=3abc.CMR
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\ge3\)
Tìm giá trị nhỏ nhất của hàm số\(f\left(x\right)=\frac{1}{1-x}+\frac{9}{3+x}\)với (\(-3< x< 1\))
Cho \(\left\{\begin{matrix}x\ge0;y\ge0;z\ge0\\x+y+z=1\end{matrix}\right.\)
Chứng minh rằng : \(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
GIÚP MÌNH NHÉ, MẶC DÙ TẾT NHÉ
(IQ2)Cho x, y, z thỏa: \(0\le\) x, y, z \(\le2\) và x+y+z=3.
Chứng minh: x3+y3+z3\(\le9\).
Cho a,b,c >= 0 thỏa mãn a+b+c=1. Tìm giá trị lớn nhất của A= căn bậc ba (a+b) + căn bậc ba (b+c) + căn bậc ba (c+a)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến