Cho \(\left( \Delta \right):\,\,\dfrac{{x - 1}}{{ - 1}} = \dfrac{{y + 3}}{2} = \dfrac{{z - 3}}{1},\,\,\left( P \right):\,\,2x + y - 2z + 9 = 0\). Lập phương trình \(\left( d \right)\) qua \(M\left( {0; - 9;0} \right)\), \(d \subset \left( P \right)\) và \(d\) cắt \(\left( \Delta \right)\).
A.\(\left\{ \begin{array}{l}x = 0 + 3t\\y = - 9 + t\\z = 2t\end{array} \right.\)
B.\(\left\{ \begin{array}{l}x = 0\\y = - 9 + t\\z = 0 + 5t\end{array} \right.\)
C.\(\left\{ \begin{array}{l}x = 0\\y = - 9 + 2t\\z = t\end{array} \right.\)
D.\(\left\{ \begin{array}{l}x = 0\\y = - 9 + 3t\\z = 2t\end{array} \right.\)