Đáp án + Giải thích các bước giải:
`a.`
`*` `\text{So sánh}` `hat(ACI)` $\text{và}$ `hat(ABD)`
Ta có: `hat(ACI) + hat(ACD) = 180^o` (2 góc kề bù) `(1)`
Xét `(O)` có:
`hat(ABD)` là góc nội tiếp chắn cung `AD`
`hat(ACD)` là góc nội tiếp chắn cung `AD`
`=>hat(ABD)+hat(ACD) = 1/2 . 360^o = 180 ^o` `(2)`
Từ `(1),(2)=>``hat(ACI)=hat(ABD)=180^o -hat(ACD) `
`*` `\text{So sánh}` `hat(CAI )` $\text{và}$ `hat(CDB )`
Ta có: `hat(CAI) + hat(BAC) = 180^o` (2 góc kề bù) `(1)`
Xét `(O)` có:
`hat(BAC)` là góc nội tiếp chắn cung `BC`
`hat(CDB)` là góc nội tiếp chắn cung `BC`
`=>hat(BAC)+hat(CDB) = 1/2 . 360^o = 180 ^o` `(2)`
Từ `(1),(2)=>``hat(CAI)=hat(CDB)=180^o -hat(BAC) `
`b.`
Xét hai tam giác `ΔIAC` và `ΔIDB ` có:
`hatA` chung
`hat(IAC) = hat (IDB)` (câu a)
`=>``ΔIAC` $∼$ `ΔIDB ` (g.g)
`c.`
Theo câu b ta có: `ΔIAC` $∼$ `ΔIDB `
Suy ra: `(IA)/(ID)=(IC)/(IB)`
hay `IA. IB = IC. ID` (đpcm)