Cho \(f\left( x \right)\) là một hàm số có đạo hàm liên tục trên \(\mathbb{R}\) và thỏa mãn \(f\left( 1 \right) = 1\) và \(\int\limits_0^1 {f\left( t \right){\rm{dt}}} = \dfrac{1}{3}.\) Giá trị của tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {\sin 2x.f'\left( {\sin x} \right){\rm{d}}x} \) bằng:
A.\(I = \dfrac{4}{3}\).
B.\(I = \dfrac{2}{3}\).
C.\(I = \dfrac{1}{3}\).
D.\(I = - \dfrac{2}{3}\).