a)B=$\frac{2x-5}{x+2}$ (x$\neq$ -2)
=>B=$\frac{2.3-5}{3+2}$
=>B=$\frac{1}{5}$
a)A=$\frac{3}{x+2}$ +$\frac{1}{x-2}$ - $\frac{3x-2}{x^2-4}$
=>A=$\frac{3(x-2)}{(x+2)(x-2)}$ +$\frac{1(x+2)}{(x-2)(x+2)}$ - $\frac{3x-2}{(x-2)(x+2)}$
=>A=$\frac{3x-6+x+2-3x+2}{(x+2)(x-2)}$ =$\frac{x-2}{(x-2)(x+2)}$ =$\frac{1}{x+2}$
c)P=A-B=$\frac{1}{x+2}$ -$\frac{2x-5}{x+2}$ =$\frac{1-2x+5}{x+2}$
=$\frac{4-2x}{x+2}$
Vì 4-2x<x+2=>P<0 khi 4-2x<0
=>2x>4 =>x>2