Đáp án đúng:
Giải chi tiết:\(\begin{array}{l}a)\,P\left( x \right)\,\,\, = 1 + 3{x^4} + 2{x^2} + {x^4} + {x^3} + 5{x^2} + 3{x^3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {3{x^4} + {x^4}} \right) + \left( {{x^3} + 3{x^3}} \right) + \left( {2{x^2} + 5{x^2}} \right) + 1\,\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \,4{x^4} + 4{x^3} + 7{x^2} + 1\,\,\,\,\\Q\left( x \right) = - 4{x^4} - 2{x^2} - 4{x^3} + 2x - 4{x^2} - x - \frac{1}{4}\\\,\,\,\,\,\,\,\,\,\,\,\, = - 4{x^4} - 4{x^3} + \left( { - 2{x^2} - 4{x^2}} \right) + \left( {2x - x} \right) - \frac{1}{4}\\\,\,\,\,\,\,\,\,\,\,\,\, = \, - 4{x^4} - 4{x^3} - 6{x^2} + x - \frac{1}{4}\end{array}\)
\(\begin{array}{l}b)\,P\left( x \right) = \,\,\,\,\,\,4{x^4} + 4{x^3} + 7{x^2} + 1\,\,\,\,\\\,\,\,\,\,Q\left( x \right) = \, - 4{x^4} - 4{x^3} - 6{x^2} + x - \frac{1}{4}\\P\left( x \right) + Q\left( x \right) = \left( {4{x^4} - 4{x^4}} \right) + \left( {4{x^3} - 4{x^3}} \right) + \left( {7{x^2} - 6{x^2}} \right) + x - \frac{1}{4} + 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \,{x^2} + x + \frac{3}{4}\\P\left( x \right) - Q\left( x \right) = \left( {4{x^4} - \left( { - 4{x^4}} \right)} \right) + \left( {4{x^3} - \left( { - 4{x^3}} \right)} \right) + \left( {7{x^2} - \left( { - 6{x^2}} \right)} \right) - x + \frac{1}{4} + 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 8{x^4} + 8{x^3} + 13{x^2} - x + \frac{5}{4}\end{array}\)
\(\begin{array}{l}c)\,P\left( x \right) + Q\left( x \right) = 0\\ \Leftrightarrow \,{x^2} + x + \frac{3}{4} = \left( {{x^2} + 2.\frac{1}{2}.x + \frac{1}{4}} \right) + \frac{2}{4}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\left( {x + \frac{1}{2}} \right)^2} + \frac{1}{2} \ge \frac{1}{2}\,\,\,\,\,\,\forall x\end{array}\)
Vậy \(P\left( x \right) + Q\left( x \right)\) luôn không có nghiệm.