Cho hai đường tròn không đồng tâm (O;R) và (O’;R’) và một điểm A trên (O;R) . Xác định điểm M trên (O;R) và diểm N trên (O’;R’) sao cho \(\overrightarrow{MN}=\overrightarrow{OA}\).
Vì : \(\overrightarrow{MN}=\overrightarrow{OA}\Rightarrow T_{\overrightarrow{OA}}:M\rightarrow N\). Do đó N nằm trên đường tròn ảnh của (O;R) . Mặt khác N lại nằm trên (O’;R’) do đó N là giao của đường tròn ảnh với với (O’;R’) . Từ đó suy ra cách tìm :
- Vè đường tròn tâm A bán kính R , đường tròn náy cắt (O’;R’) tại N
- Kẻ đường thẳng d qua N và song song với OA , suy ra d cắt (O;R) tại M