A.\(1\)B.\(5\)C.\(\sqrt 5 \)D.\(2\)
A.\(2\ln \left( {x + 1} \right) + \dfrac{1}{{x + 1}} + C\)B.\(\ln \left( {x + 1} \right) - \dfrac{2}{{x + 1}} + C\)C.\(2\ln \left( {x + 1} \right) + \dfrac{2}{{x + 1}} + C\) D.\(2\ln \left( {x + 1} \right) - \dfrac{1}{{x + 1}} + C\)
A.\(64\)B.\(81\)C.\(\dfrac{3}{4}\)D.\(12\)
A.\(\dfrac{x}{1} + \dfrac{y}{{ - 2}} + \dfrac{z}{{ - 3}} = 0\)B.\(\dfrac{x}{{ - 1}} + \dfrac{y}{{ - 2}} + \dfrac{z}{3} = 1\)C.\(\dfrac{x}{1} + \dfrac{y}{{ - 2}} + \dfrac{z}{{ - 3}} = 1\)D.\(\dfrac{x}{{ - 1}} + \dfrac{y}{2} + \dfrac{z}{3} = 1\)
A.\({90^0}\)B.\({45^0}\)C.\({60^0}\)D.\({30^0}\)
A.\(3\)B.\(1\)C.\(4\)D.\(2\)
A.\(\left( { - 1;2} \right)\)B.\(\left( { - 2;0} \right)\)C.\(\left( { - 1;0} \right)\)D.\(\left( {0; + \infty } \right)\)
A.\(40\)B.\(20\sqrt 2 \)C.\(4\sqrt {10} \)D.\(8\)
A.\(\left\{ \begin{array}{l}x = 2 - t\\y = 4 - 4t\\z = 4 - 2t\end{array} \right.\)B.\(\left\{ \begin{array}{l}x = 1 + t\\y = 2 + 4t\\z = 2 + 2t\end{array} \right.\)C.\(\left\{ \begin{array}{l}x = 1 + t\\y = - 4t\\z = 2 + 2t\end{array} \right.\)D.\(\left\{ \begin{array}{l}x = 1 - t\\y = 4t\\z = 2 + 2t\end{array} \right.\)
A.\(\overrightarrow {{u_3}} = \left( {3; - 1;2} \right)\)B.\(\overrightarrow {{u_2}} = \left( {4;2;3} \right)\)C.\(\overrightarrow {{u_4}} = \left( {4; - 1;3} \right)\)D.\(\overrightarrow {{u_1}} = \left( {3;1;2} \right)\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến