Cho hàm số \(f\left( x \right) = \frac{1}{3}{x^3} - {x^2} + mx + 5\) với \(m\) là tham số. Tìm tất cả các giá trị của tham số \(m\) để \(f'\left( x \right) \ge 0\) với mọi \(x \in \mathbb{R}.\) A.\(m \ge 1.\) B.\(m > 1.\) C.\(m < 1.\) D.\(m \le 1.\)
Phương pháp giải: - Tìm đạo hàm của hàm số. Sử dụng công thức \(\left( {{x^n}} \right)' = n{x^{n - 1}}\). - Tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c \ge 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta \le 0\end{array} \right.\). Giải chi tiết:TXĐ: \(D = \mathbb{R}\). Ta có \(f'\left( x \right) = {x^2} - 2x + m\) \(\begin{array}{l}f'\left( x \right) \ge 0\,\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow {x^2} - 2x + m \ge 0\,\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow \left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = 1 - m \le 0\end{array} \right.\\ \Leftrightarrow m \ge 1.\end{array}\) Chọn A.