Cho hàm số \(y = {x^3} - 2m{x^2} + 1\) có đồ thị \(\left( {{C_m}} \right)\). Tìm m sao cho \(\left( {{C_m}} \right)\) cắt đường thẳng \(d:\,\,y = x + 1\) tại ba điểm phân biệt có hoành độ \({x_1},\,{x_2},\,{x_3}\) thỏa mãn \({x_1} + \,{x_2} + \,{x_3} = 101\)
A.\(m = \frac{{101}}{2}\).
B.\(m = 50\).
C. \(m = 51\).
D. \(m = 49\).